Chip-firing games on Eulerian digraphs and -hardness of computing the rank of a divisor on a graph
نویسندگان
چکیده
Baker and Norine introduced a graph-theoretic analogue of the Riemann-Roch theory. A central notion in this theory is the rank of a divisor. In this paper we prove that computing the rank of a divisor on a graph is NP-hard. The determination of the rank of a divisor can be translated to a question about a chip-firing game on the same underlying graph. We prove the NP-hardness of this question by relating chip-firing on directed and undirected graphs.
منابع مشابه
Feedback arc set problem and NP-hardness of minimum recurrent configuration problem of Chip-firing game on directed graphs
In this paper we present further studies of recurrent configurations of Chip-firing games on Eulerian directed graphs (simple digraphs), a class on the way from undirected graphs to general directed graphs. A computational problem that arises naturally from this model is to find the minimum number of chips of a recurrent configuration, which we call the minimum recurrent configuration (MINREC) ...
متن کامل0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملChip-Firing Game and a Partial Tutte Polynomial for Eulerian Digraphs
The Chip-firing game is a discrete dynamical system played on a graph, in which chips move along edges according to a simple local rule. Properties of the underlying graph are of course useful to the understanding of the game, but since a conjecture of Biggs that was proved by Merino López, we also know that the study of the Chip-firing game can give insights on the graph. In particular, a stro...
متن کاملA maximizing characteristic for critical configurations of chip-firing games on digraphs
Aval et al. proved in [2] that starting from a critical configuration of a chipfiring game on an undirected graph, one can never achieve a stable configuration by reverse firing any non-empty subsets of its vertices. In this paper, we generalize the result to digraphs with a global sink where reverse firing subsets of vertices is replaced with reverse firing multi-subsets of vertices. Consequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 193 شماره
صفحات -
تاریخ انتشار 2015